Weighted k-Nearest-Neighbor Techniques and Ordinal Classification
نویسنده
چکیده
In the field of statistical discrimination k-nearest neighbor classification is a well-known, easy and successful method. In this paper we present an extended version of this technique, where the distances of the nearest neighbors can be taken into account. In this sense there is a close connection to LOESS, a local regression technique. In addition we show possibilities to use nearest neighbor for classification in the case of an ordinal class structure. Empirical studies show the advantages of the new techniques.
منابع مشابه
An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملIdentification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor
Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we d...
متن کاملComparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)
In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...
متن کاملImproving nearest neighbor classification with cam weighted distance
Nearest neighbor (NN) classification assumes locally constant class conditional probabilities, and suffers from bias in high dimensions with a small sample set. In this paper, we propose a novel cam weighted distance to ameliorate the curse of dimensionality. Different from the existing neighborhood-based methods which only analyze a small space emanating from the query sample, the proposed nea...
متن کامل